Syndecan 4 Mediates Nrf2-dependent Expansion of Bronchiolar Progenitors That Protect Against Lung Inflammation
نویسندگان
چکیده
The use of lung progenitors for regenerative medicine appears promising, but their biology is not fully understood. Here, we found anti-inflammatory attributes in bronchiolar progenitors that were sorted as a multipotent subset of mouse club cells and found to express secretory leukocyte protease inhibitor (SLPI). Notably, the impaired expression of SLPI in mice increased the number of bronchiolar progenitors and decreased the lung inflammation. We determined a transcriptional profile for the bronchiolar progenitors of Slpi-deficient mice and identified syndecan 4, whose expression was markedly elevated as compared to that of wild-type mice. Systemic administration of recombinant syndecan 4 protein caused a substantial increase in the number of bronchiolar progenitors with concomitant attenuation of both airway and alveolar inflammation. The syndecan 4 administration also resulted in activation of the Keap1-Nrf2 antioxidant pathway in lung cells, which is critically involved in the therapeutic responses to the syndecan 4 treatment. Moreover, in 3D culture, the presence of syndecan 4 induced differentiated club cells to undergo Nrf2-dependent transition into bronchiolar progenitors. Our observations reveal that differentiative switches between bronchiolar progenitors and club cells are under the Nrf2-mediated control of SLPI and syndecan 4, suggesting the possibility of new therapeutic approaches in inflammatory lung diseases.
منابع مشابه
Mechanistic studies of the Nrf2-Keap1 signaling pathway.
Since eukaryotic cells constantly encounter various environmental insults, they have evolved defense mechanisms to cope with toxicant- and carcinogen-induced oxidative stress or electrophiles. One of the most important cellular defense mechanisms against oxidative stress or electrophiles is mediated by the transcription factor Nrf2. Under the basal condition, Nrf2-dependent transcription is rep...
متن کاملExacerbated Airway Toxicity of Environmental Oxidant Ozone in Mice Deficient in Nrf2
Ozone (O3) is a strong oxidant in air pollution that has harmful effects on airways and exacerbates respiratory disorders. The transcription factor Nrf2 protects airways from oxidative stress through antioxidant response element-bearing defense gene induction. The present study was designed to determine the role of Nrf2 in airway toxicity caused by inhaled O3 in mice. For this purpose, Nrf2-def...
متن کاملAnti-inflammatory role of piperine against rat lung tissue damage induced by gamma-rays
Background: Radiation‐induced acute lung damages are refractory side effects in lung cancer radiotherapy (RT). Prospective study investigates the possible role of piperine (Pip) as anti-inflammatory agent against γ-rays-induced lung tissue lesions in an applicable rat model. Materials and Methods: Fifty-six Sprague-Dawley rats were divided into four groups: Control, rats were administered...
متن کاملIncreased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer.
The nuclear factor-erythroid 2-related factor 2 (Nrf2) plays a critical role in protecting various tissues against inflammation, which is a potential risk factor for colorectal and other cancers. Our previously published mouse model work showed that Nrf2 helps protect against dextran sulfate sodium (DSS)-induced colitis/inflammation, and others have shown that Nrf2 helps protect against inflamm...
متن کاملRole of Nrf2 in host defense against influenza virus in cigarette smoke-exposed mice.
Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in ...
متن کامل